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Random Analytic Chaotic Eigenstates1
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The statistical properties of random analytic functions �(z) are investigated as
a phase-space model for eigenfunctions of fully chaotic systems. We generalize
to the plane and to the hyperbolic plane a theorem concerning the equidistribu-
tion of the zeros of �(z) previously demonstrated for a spherical phase space
[SU(2) polynomials]. For systems with time-reversal symmetry, the number of
real roots is computed for the three geometries. In the semiclassical regime, the
local correlation functions are shown to be universal, independent of the system
considered or the geometry of phase space. In particular, the autocorrelation
function of � is given by a Gaussian function. The connections between this
model and the Gaussian random function hypothesis as well as the random
matrix theory are discussed.

KEY WORDS: Chaotic dynamics; quantum mechanics; analytic representa-
tions; distribution of zeros of random functions.

I. INTRODUCTION

There are two basic descriptions of the eigenfunctions of fully chaotic
systems. On the one hand, there is the random matrix theory of Wigner
and Dyson as a model of the quantum behavior of chaotic motion.(1, 2)

In this model the Hilbert space is isotropic, i.e., an arbitrary eigenstate .
of the random matrix can point out in any direction of Hilbert space
with equal probability. The only constraint comes from the normalization.
Denoting by a� =(a0 , a1 ,..., aN) the components of . in a given (and
arbitrary) basis, the joint probability distribution for the amplitudes is(3)

DRMT (a� )=
1

|S2(N+1) |
$ _ :

N

m=0

|am | 2&1& (1)
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where |Sn |=2?n�2�1 (n�2) is the surface of a (n&1)-dimensional sphere of
unit radius. We assume for the moment that a� is a complex vector, this
being the usual situation when the physical system has no time-reversal
symmetry. By construction this theory concentrates on statistical aspects of
the eigenstates, and the ``ergodicity'' in Hilbert space expressed by Eq. (1)
is a direct consequence of the invariance of the ensemble of matrices under
unitary transformations.

On the other hand, a semiclassical theory has also been developed.(4�7)

Unlike the random matrix theory, its aim is to provide a system-dependent
description of the eigenstates based on the solutions of the classical
dynamics. Adopting a phase-space representation of quantum mechanics,
in the semiclassical limit � � 0 the Wigner transform W�(x� , p� , E ) of an
eigenstate � of an ergodic system at energy E takes to leading order the
simple form(7)

W�(x� , p� , E )rN$[E&H(x� , p� )] (2)

where N is a normalization constant, (x� , p� ) parametrizes the phase space
and H(x� , p� ) is the classical Hamiltonian. Because in the semiclassical limit
the Wigner function presents wild oscillations, Eq. (2) has to be interpreted
as a smoothed version over a phase space region of the order of one Planck
volume.

Besides the energy-shell ergodicity, Eq. (2) reveals a strong localization
effect in phase space of which there is no trace in Eq. (1). Because of energy
conservation W� is, in the semiclassical limit, exponentially concentrated
on the energy shell. This means that when expanding an eigenstate of H in
an arbitrary basis ,m of Hilbert space it will have components different
from zero only on those states whose Wigner transform intersects��or is
included into��the energy shell $[E&H(x� , p� )], while the amplitudes will
vanish exponentially fast otherwise. Therefore, in general for a given
chaotic Hamiltonian system the expected distribution of the eigenstates's
amplitudes is quite different from the isotropic rule (1), because random
matrix theory ignores the phase-space restrictions imposed by energy con-
servation. Eq. (1) has therefore to be interpreted as a valid statement only
for the amplitudes am whose associated vector ,m intersects the energy
shell.

Having this in mind, our purpose is to further develop the connections
between the two above mentioned descriptions. In particular, assuming a
two-dimensional phase space we study the ergodicity of the eigenstates as
implied by Eq. (1), as well as some correlation functions computed inside
the energy shell. For that purpose, we use the Bargmann (or coherent
state) representation which associates to each quantum state an analytic
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function �(z) in the complex plane. This complex plane is interpreted as a
parametrization of the energy shell manifold, and the three simplest one-
dimensional complex manifolds are considered: the sphere (curvature +1),
the plane (zero-curvature) and the hyperbolic plane or pseudosphere (cur-
vature &1). After introducing the model in Section II, we show in Section III
that the associated Bargmann functions given by Eq. (3) below have, when
the coefficients am are distributed according to Eq. (1), a uniform distribu-
tion of zeros over the sphere, the plane and the hyperbolic plane, respec-
tively. The uniformity of the distribution was shown in refs. 8 and 9 for the
spherical geometry, and the results of this paper constitute a generalization
to the plane and to the hyperbolic plane. Some related theorems extending
some of the results to higher dimensional phase spaces were recently
obtained independently in ref. 10.

We also consider the case when the W1 and SU(1, 1) series in Eq. (3)
are truncated to a finite number of terms (thus introducing W1 and
SU(1, 1) polynomials). It is shown that for those polynomials the distribu-
tion of roots is now uniform over a finite region (a disk) of the complex
plane and the hyperbolic plane, respectively.

The equidistribution of roots holds only if the vector a� is complex.
When it is real (which corresponds to time-reversal symmetric systems),
a concentration of roots occurs over the real axis in the complex plane.
We show that for the three random functions considered the number of
real roots located inside a disk centered at the origin containing N zeros is
proportional to - N .

Section IV is devoted to the study of the correlation properties of the
random analytic functions between different points of the energy shell. We
first argue that in the semiclassical limit all the correlation functions are
locally universal, independent of the geometry of phase space. We then
compute as a particular example the autocorrelation of �(z).

II. RANDOM ANALYTIC FUNCTIONS

In order to study the statistical properties of eigenstates of chaotic
systems, we first define an energy-shell (phase space) associated to the
quantum mechanical system. We will not consider a specific dynamical
system but make general statements which are expected to be valid for any
system having at the classical level a strongly chaotic behavior.

Concerning the energy shell, the minimum dimensionality required in
order to have chaotic behavior at the classical level is two. This two-dimen-
sional manifold M could be for example the Poincare� surface of section of
the energy shell of a two-freedoms Hamiltonian system. But we can alter-
natively choose a two-dimensional manifold and directly define on it a fully
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chaotic area-preserving map, thereby avoiding the problem of the reduc-
tion to the Poincare� section. In both cases one can define a unitary
operator which quantizes the classical flow. In the following we study
properties of the eigenstates of this unitary operator. Because in principle
it corresponds to a section of it, we will still call the manifold M the
``energy shell.''

Independently of the definition of the dynamics, the three simplest
possibilities for M are, in two dimensions, the sphere, the plane and the
hyperbolic plane or pseudosphere(11) (the cylinder and the torus being just
periodicized versions of the plane), having curvature +1, 0 and &1,
respectively. The choice of the manifold will depend on the dynamical sym-
metry group underlying the system Hamiltonian under study. The three
spaces considered are associated with the SU(2), W1 and SU(1, 1) sym-
metry, respectively. For example, for the motion of a spin in a variable
magnetic field the appropriate phase-space manifold is the sphere (see
ref. 12 for illustrations in different geometries). Area preserving chaotic
maps have been studied in the plane and its periodicized versions (e.g., the
cat, standard and kicked Harper maps) and the sphere (the kicked top) but
not, to our knowledge, in the pseudosphere.

The next step is to define a representation of the quantum states over the
manifold M. This can be achieved for the three geometries under considera-
tion by means of a phase-space coherent state (Bargmann) representation of
quantum mechanics consisting of overcomplete and non-orthogonal
systems of Hilbert space vectors. An arbitrary quantum state can be written
in the coherent state basis as(13, 12)

:
N

m=0

- C m
N amzm, SU(2)

�(z)={ :
�

m=0

1

- m! �m
amzm, W1 (3)

:
�

m=0

- C m
L+m&1 am zm, SU(1, 1)

where C l
k=k!�l !(k&l )! are Newton's binomial coefficients. For SU(2) we

have N=2j, where j=1�2, 1, 3�2,... is the usual spin label of the (2j+1)-
dimensional representation. For SU(1, 1), L=2k, with k=1, 3�2, 2,... is the
usual label of the discrete representation of the group.(12) Unlike the case
of W1 and SU(1, 1), the representation of the quantum state for SU(2) is
finite dimensional, reflecting the fact that the group is compact.
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Equation (3) provides a realization of the Hilbert space in terms of
analytic functions �(z). The complex variable appearing in Eq. (3) spans in
each case the associated manifold M. It is defined as

cot(%�2) exp(i.), SU(2)

z={(x&ip)�- 2, W1 (4)

tanh ({�2) exp(i.), SU(1, 1)

Here (%, .), (x, p) and ({, .) are the usual variables labeling these
manifolds (see Fig. 1). The measure of these three manifolds projected onto
the z-plane is

1
?

d 2z
(1+zz� )2 SU(2)

+(z, z� )={ d 2z�(?�) W1 (5)

1
?

d 2z
(1&zz� )2 SU(1, 1)

The notation d 2| where | is a complex variable stands for
d(Re |) d(Im |).

Now comes the statistical ingredient entering in the definition of the
model. If � is an eigenstate of the quantization of the map acting on M

then, for a fully chaotic dynamics, we assume that the amplitudes [am] in
Eq. (3) are distributed according to Eq. (1). Of course this is an hypothesis
whose validity has to be compared with the behavior of real dynamical
systems. Including this element, we obtain therefore a phase-space model
for chaotic eigenstates in terms of random analytic functions. For SU(2)
polynomials this model was introduced in ref. 8 and further considered in
refs. 14, 15, 9, 16, and 17.

Being analytic, the average properties of the random functions �(z)
cannot be stationary over the complex plane (unless the function is trivially
a constant). For example, for SU(2) the average square modulus of �(z)
grows like

(�(z) �(z)) = :
N

m, n=0

- C N
m C N

n (ama� n) zmz� n=(1+zz� )N (6)

The brackets indicate average over a distribution for the coefficients,
( f (a� )) =� d 2a0 } } } d 2aNP(a� ) f (a� ). For convenience we use for the
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Fig. 1. (a) The sphere and, (b) the pseudosphere (upper sheet of the hyperboloid
&x2

0+x2
1+x2

2=&1) having curvature +1 and &1, respectively. For SU(2), the definition of
z corresponds to a stereographic projection which maps the unit sphere labeled by (%, .) onto
the equatorial complex plane labeled by z, the north pole of the sphere being the center of
projection. In the case of SU(1, 1), a projection of the pseudosphere onto the unit disk in the
complex z-plane located at x0=0 is done through the point (x1 , x2 , x0)=(0, 0, &1).

computation of the averages a different normalization from that of
Eq. (1)

P(a� )=
2(N+1)
|S2(N+1) |

$ _ :
N

m=0

|am | 2&(N+1)& (7)

We therefore have

(ama� n)=$mn (8)

from which we obtained Eq. (6). This change of normalization has no
incidence in the results reported in this paper since the quantities con-
sidered (cf. Eqs. (12) and (20)) are independent of the global normalization
of �.

An analogous computation can be done for the other two geometries,
the plane and the pseudosphere. When computing the averages for these
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two geometries, we truncate the series in Eq. (3) to a finite value m=N and
then we let N � �. We get

(1+zz� )N SU(2)

(�(z) �(z))={exp(zz� ��) W1 (9)

(1&zz� )&L SU(1, 1)

As was pointed out in ref. 18, the statistical properties of the zeros of
�(z) are unaffected if instead of the distribution (7) a Gaussian indepen-
dent distribution for the coefficients is used. This is also true in the large
N limit for any statistical property of �(z), because the distribution (7) also
implies in that limit a Gaussian law for the distribution of a given coef-
ficient. For most purposes, Eq. (7) (or alternatively (1)) is equivalent to a
Gaussian independent distribution.

The random analytic model then implies that at each point of phase
space the distribution P(�) of the function �(z) is Gaussian, with a local
variance given precisely by Eq. (9) (in agreement with the old conjecture of
Berry(5))

P(�)=
1

- 2?( |�(z)|2)
exp(&|�(z)| 2�2( |�(z)|2) ) (10)

The relationship between the statistical properties of � in different
representations was recently considered in ref. 19.

III. ERGODICITY

The simplest question concerning the statistical properties of the func-
tions �(z) is related to the ergodicity. We would like to establish more
clearly the connection between the Hilbert space ergodicity of Eq. (1) on
the one hand and the phase-space ergodicity over the energy shell on the
other. From the results of the previous section this connection is now easy
to establish.

As we mention, the functions �(z) are not stationary in the complex
z-plane. However, the quantity which is physically associated to the
presence of the particle in a neighborhood of a phase space cell (and there-
fore more closely related to the notion of ergodicity) is not �(z) but rather
the (quasi) probability density

H�(z, z� )=
|�(z)| 2

( |�(z)|2)
(11)
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usually called the Husimi function. It is simply obtained from the Wigner
transform through a Gaussian convolution. Exactly as for the average
Wigner function Eq. (2), Eq. (11) implies that the average of the Husimi
function is constant in the complex z-plane. Because of this, the (quasi)
probability H� d+ is going to be stationary on the manifold M (and not in
the complex z-plane where the measure is not uniform (cf. Eq. (5)).

In particular, the previous statement applies to the distribution of the
zeros of H� , i.e., the density of zeros of H� should be uniform over the
manifold M. This is going to be true for the zeros of �(z) as well, because
both functions have the same set of zeros.(20) In fact, the uniformity over
M of the density of zeros \(z)=$[�(z)] |d�(z)�dz|2 of �(z) can be directly
checked for the three geometries from the general formula(15)

(\(z)) =
1
?

�2

�z �z�
[ln(�(z) �(z))] (12)

From (9) and (12) we find, for each geometry

N
?

d 2z
(1+zz� )2=

N
4?

sin % d% d. SU(2)

(\(z)) d 2z={d 2z�(?�) W1 (13)

L
?

d 2z
(1&zz� )2=

L
4?

sinh { d{ d. SU(1, 1)

For the sphere and the pseudosphere, the density has been transformed
to the usual coordinates spanning the corresponding manifold. Equa-
tion (13) shows that the density of zeros of the random-�(z) model is
indeed uniform over the associated manifold M (this being true for
arbitrary values of the parameters N, L or �).

The uniformity of the density of zeros was also demonstrated for
random analytic functions defined on the two-dimensional torus.(21) There
exist also some related results obtained without using the random
hypothesis. For example it was proved(21) that the Schnirelman property
for the Husimi density implies a (weak) convergence of the density of zeros
towards the uniform measure. The uniformity of the distribution of zeros
was checked numerically for certain maps on the sphere(8, 9) and also for
two-dimensional chaotic systems with W1 symmetry.(22)

In spite of its aesthetical beauty, Eq. (13) has an unpleasant feature for
the W1 and the SU(1, 1) groups, since a uniform density of zeros for �(z)
over the whole (non-compact) manifold M is not realistic from a dynami-
cal point of view. For chaotic Hamiltonian systems, non-compact energy
shells like the plane or the pseudosphere are somewhat artificial because
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energy conservation implies in general a compact manifold (or Poincare�
surface of section). A more appropriate model for the eigenfunctions of
a system having a W1 or SU(1, 1) symmetry would then be a truncated
version of Eq. (3) to a finite degree N. For the plane for example, we have
the W1 polynomial

�(z)= :
N

m=0

am

- m! �m
zm (14)

In practice the integer N at which the truncation is made fixes the
approximate number of zeros lying in the classically allowed region of
phase space at a fixed energy (outside which the associated Husimi func-
tion has a rapid decay). It is given by the semiclassical rule Nr (area of
classically allowed region)�2?�. The average density of roots for this poly-
nomial can be computed from (12), with the result

(\(z)) =
1

?� {1& g \zz�
� +_1+N&

zz�
�

+
zz�
�

g \zz�
� +&= (15)

where g(x)=(xN�N!)��N
m=0 (xm�m!). The function (15) has a step-like

shape with a constant density of zeros 1�(?�) inside a circle of radius
t- N� and a vanishing density outside (see Fig. 2). It tends, in the large
N-limit, to the unit step function 3(1&r) where r=|z|�- N�. The con-
vergence is however slow since for large values of r we find a power law
dependence (\(r)) r1�(?�Nr4)+O(1�r6).

Fig. 2. The normalized density of zeros Eq. (15) for the W1 random polynomials as a func-
tion of r=|z|�- N� for N=100.
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We therefore recover for the W1 random polynomials the appealing
feature that the Bargmann transform of a chaotic eigenstate has a uniform
density of zeros in a finite region of the phase space plane (over which the
associated Husimi function is stationary). The decay of the density outside
the classically allowed region is also of interest, because it describes the
evanescence of the eigenfunction � in the classically forbidden region.(23)

But we don't expect the decay predicted by Eq. (15) to be very accurate
due to the abrupt truncation of � at m=N.

Analogous results are obtained for the SU(1, 1) polynomials defined,
like the W1 polynomial, by the truncation of the series in Eq. (3) to a finite
value of m

�(z)= :
N

m=0

- C m
L+m&1 amzm (16)

In the limit N>>L we find a constant density of zeros in the hyperbolic
plane inside a region of size cosh {rN�L.

Time Reversal Symmetry

The previous results are valid when the coefficients of the random
functions are complex. This generally corresponds to systems without time
reversal symmetry. For systems having that symmetry, the coefficients [am]
can be chosen to be real, and �(z) satisfies now the functional equation

�(z)=�(z� )

As discussed in detail in ref. 9, the existence of a functional equation generi-
cally produces a concentration of a certain number NR of roots over the
symmetry line (here the real axis in the complex z-plane, labeled by x).
The distribution and correlations of roots of real polynomials was studied
in ref. 24. For SU(2) polynomials, explicit expressions for the correlations
existing between real roots where obtained in ref. 17.

The number NR=� (\(x)) dx of real roots of a polynomial whose
coefficients are real random Gaussian independently distributed with
variance _2

m may be computed from a general formula obtained by Kac.
The average density of real roots is given by(18)

(\(x)) =
1
?

- A(x) C(x)&B2(x)
A(x)

(17)
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with

A(x)= :
N

m=0

_2
mx2m

B(x)=A$(x)�2 (18)

C(x)=[A"(x)+A$(x)�x]�4

where the prime indicates derivative with respect to x.
For SU(2) polynomials we have _2

m=C m
N , A(x)=(1+x2)N and from

(17) we obtain (\(x)) dx=(N�?)(dx�(1+x2)). By a stereographic projec-
tion x=cot(%�2) the density simplifies to (\(%)) d%=(- N�2?) d%. After
integration we obtain N (SU(2))

R =- N , a result which was obtained in
ref. 14.

For real W1 random functions, _2
m=1�(k! �k), A(x)=exp(x2��) and

(\(x)) dx=dx�(? - 2�) (remember that the measure is dx�- 2). Since for
the complex W1 function we have, according to Eq. (13), N roots in a disk
of radius r=- 2�N , we find that the number of real roots when the coef-
ficients are real is N (W1)

R =(2�?) - N .
Finally, for SU(1, 1) we have _2

m=C m
L+m&1 , A(x)=1�(1&x2)N and

(\(x)) dx=(N�?)(dx�(1&x2)). Going to the hyperbolic plane via x=
tanh({�2), the density is simply written (\({)) d{=(- N�2?) d{. Since for
the complex SU(1, 1) function we have, according to Eq. (13), a number L
of roots in a region of size {=arccosh(3), we find a number of real roots
given by N (SU(1, 1))

R =(arccosh(3)�?) - N .

IV. PHASE-SPACE CORRELATIONS��UNIVERSALITY

Besides the average density of roots, other relevant statistical proper-
ties are correlation functions of �(z) or of its zeros. One might think that
this quantities are geometry dependent. However, in the large-N limit, the
three different geometries treated here tend to the same flat-space result.
Indeed, for fixed m we have

lim
X � �

C m
X= lim

X � �
C m

X+m&1=
X m

m!
(19)

where X=N for the SU(2) group and X=L for the SU(1, 1). This implies
that, with the scaling z � - X z, the SU(2) and truncated SU(1, 1) polyno-
mials tend to the truncated W1 polynomial in a region around the origin
of the z-plane (the argument can be repeated for an arbitrary point lying
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inside the constant-density region). This is easy to understand since in the
large-N limit the local density of zeros of the rescaled polynomials tend to
diverge (the mean spacing between zeros in rescaled units goes like 1�- N ).
On a scale of distances of a few mean spacings between zeros the space will
look, locally, flat. As a consequence the local fluctuation properties of all
these functions are, asymptotically, the same.(25) This can be rephrased as
a general statement concerning the local correlation properties of eigen-
states of fully chaotic systems (for points lying inside the energy shell): they
are universal, independent of the system under consideration or the geometry
of phase space.

The n-point correlation functions among zeros have been computed
analytically by J. Hannay for random SU(2) polynomials.(15) In particular,
it was found that there is a cubic repulsion between zeros. The previous
considerations imply that in the large-N limit these correlation functions
should be valid locally for any geometry. The two-point correlation func-
tion as well as a computation of the nearest neighbor spacing distribution
for the random analytic model have been compared with numerical results
obtained for several chaotic maps in different phase space geometries in
ref. 16. Very good agreement has been found, thus supporting the univer-
sality of the correlations. Further support comes from a computation of
the two-point correlation function and the nearest neighbor spacing dis-
tribution for the zeros of a two-dimensional chaotic system having a W1

symmetry.(22)

Concerning �(z) itself (and not its zeros), the simplest quantity of
interest is the autocorrelation function

C(!, z)=
(�(z&!�2) �(z+!�2))

- ( |�(z&!�2)|2)( |�(z+!�2)| 2)
(20)

As before, this quantity will be asymptotically independent of the geometry.
For simplicity, we restrict the computation to the W1 case. Using Eqs. (3),
(8) and (9) one finds

C(!, z)=exp[&|!|2�2+i Im(z!� )] (21)

Unlike the phase, the modulus of the autocorrelation is independent of z
and is isotropic. This result should be compared with an analogous com-
putation in configuration space, (5) where it was found that C is given by a
Bessel function (we find that Eq. (21) holds also for systems with time
reversal symmetry; analogous quantities for systems with and without time-
reversal symmetry have been considered more recently in ref. 26).

662 Lebwuf



V. CONCLUSIONS

The distribution of the zeros of W1 random polynomials of degree N
is strongly reminiscent to that of the eigenvalues of a Gaussian ensemble of
N_N complex matrices discussed by Ginibre (see Chapter 15 in ref. 1).
Indeed, for large values of N both distributions have a uniform density in
the complex plane inside a disk of radius |z|r- N , and rapidly decaying
to zero outside of it (for simplicity, we set �=1 in Eq. (16)). The distribu-
tions are however different. The density has a Gaussian tail for |z|>>- N
in the case of the eigenvalues of random complex matrices, while it has a
power law decay for W1 polynomials. Moreover, in the case of Ginibre the
distribution may be interpreted as a two-dimensional Coulomb gas, while
the two-dimensional gas associated to zeros of random polynomials
includes, apart from the Coulomb interaction, N-body terms.(16) A detailed
comparison between these two interacting systems was recently made in
ref. 27.

Several extensions of the results reported here are conceivable, in par-
ticular to higher dimensional complex manifolds. The random matrix dis-
tribution (1) is in fact valid independently of the number of degrees of
freedom of the underlying physical system. It is therefore natural to expect
that results analogous to those obtained here for the distribution of the
zeros in two dimensional phase spaces also hold in higher dimensions (like
for example for polynomials with several complex variables). And indeed a
generalization to SU(m+1) polynomials with m>1 was recently done in
ref. 10.
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